Tuesday, 18 October 2011

Peace

Enfermedad pulmonar obstructiva crónica (EPOC)

Enfermedad Pulmonar Obstructiva Crónica (EPOC)

DATOS FUNDAMENTALES

  • La enfermedad pulmonar obstructiva crónica (EPOC) altera la respiración normal y es potencialmente mortal. Es más que la "tos del fumador".
  • Se calcula que hubo 64 millones de personas con EPOC en el 2004.1
  • En 2005 murieron por esta causa más de 3 millones de personas, lo cual representa un 5% de todas las muertes registradas ese año.
  • Aproximadamente un 90% de las muertes por EPOC se producen en países de bajos y medianos ingresos.
  • La principal causa de la EPOC es el humo del tabaco (fumadores activos y pasivos).
  • En la actualidad, afecta casi por igual a ambos sexos, en parte debido al aumento del consumo de tabaco entre las mujeres de los países de ingresos elevados.
  • La EPOC no es curable, pero el tratamiento puede retrasar su progresión.
  • Se prevé que, en ausencia de intervenciones para reducir los riesgos, y en particular la exposición al humo del tabaco, las muertes por EPOC aumenten en más de un 30% en los próximos 10 años.

La enfermedad pulmonar obstructiva crónica (EPOC) se caracteriza por un bloqueo persistente del flujo de aire. Se trata de una enfermedad subdiagnosticada y potencialmente mortal que altera la respiración normal y no es totalmente reversible. Los términos bronquitis crónica y enfisema están obsoletos, quedando englobados en el diagnóstico de EPOC.

Síntomas

Los síntomas más frecuentes de la EPOC son la disnea (falta de aire), la expectoración anormal y la tos crónica. A medida que la enfermedad empeora, pueden hacerse muy difíciles actividades cotidianas como subir unos cuantos escalones o llevar una maleta.

Diagnóstico y tratamiento

La presencia de EPOC se confirma con una prueba diagnóstica simple, llamada espirometría, que mide la cantidad y la velocidad del aire inspirado y espirado. Como tiene una evolución lenta, generalmente se diagnostica en personas de 40 años o más.

La EPOC no se cura, pero hay varios tratamientos que pueden ayudar a controlar sus síntomas y a mejorar la calidad de vida de los pacientes. Por ejemplo, los medicamentos broncodilatadores pueden mejorar la disnea.




Población en riesgo

Antes, la EPOC era más frecuente en el sexo masculino, pero debido al aumento del consumo de tabaco entre las mujeres de los países de ingresos elevados y al mayor riesgo de exposición a la contaminación del aire de interiores (por ejemplo, la derivada de la utilización de combustibles sólidos en la cocina y la calefacción) entre las mujeres de los países de bajos ingresos, en la actualidad afecta casi por igual a ambos sexos.

Aproximadamente un 90% de las muertes por EPOC se producen en los países de bajos y medianos ingresos, donde no siempre se ponen en práctica o son accesibles las estrategias eficaces de prevención y control.


Factores de riesgo

La EPOC es prevenible. Su principal causa es el humo del tabaco (fumadores activos y pasivos). Otros factores de riesgo son:
  • la contaminación del aire de interiores (por ejemplo, la derivada de la utilización de combustibles sólidos en la cocina y la calefacción);
  • la contaminación del aire exterior;
  • la exposición laboral a polvos y productos químicos (vapores, irritantes y gases);
  • las infecciones repetidas de las vías respiratorias inferiores en la infancia.

Se prevé que, en ausencia de intervenciones para reducir los riesgos, y en particular la exposición al humo del tabaco, las muertes por EPOC aumenten en más de un 30% en los próximos 10 años.


Respuesta de la OMS

La lucha contra la EPOC forma parte de las actividades generales de prevención y control de las enfermedades crónicas que lleva a cabo la Organización, cuyos objetivos son:
  • aumentar la sensibilización acerca de la epidemia mundial de enfermedades crónicas;
  • crear ambientes más saludables, sobre todo para las poblaciones pobres y desfavorecidas;
  • reducir los factores de riesgo comunes de las enfermedades crónicas, tales como el consumo de tabaco, las dietas malsanas y la inactividad física;
  • prevenir las muertes prematuras y las discapacidades evitables relacionadas con las principales enfermedades crónicas.

El Convenio Marco de la OMS para el Control del Tabaco es una respuesta a la mundialización de la epidemia de tabaquismo y tiene por objetivo proteger a miles de millones de personas de la exposición nociva al humo del tabaco. Es el primer tratado sanitario mundial que ha negociado la Organización Mundial de la Salud y ha sido ratificado ya por más de 167 países.

La OMS también encabeza la Alianza Mundial contra las Enfermedades Respiratorias Crónicas (GARD), una alianza voluntaria de organizaciones, instituciones y organismos nacionales e internacionales que trabajan para alcanzar el objetivo común de reducir la carga mundial de enfermedades respiratorias crónicas y lograr un mundo en el que todos podamos respirar libremente.

 1 Fuentes:  

Chronic obstructive pulmonary disease (COPD)


Chronic obstructive pulmonary disease (COPD)


Key facts
Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disease that interferes with normal breathing – it is more than a “smoker’s cough”.
An estimated 64 million people have COPD worldwide in 2004.1
More than 3 million people died of COPD in 2005, which is equal to 5% of all deaths globally that year.
Almost 90% of COPD deaths occur in low- and middle-income countries.
The primary cause of COPD is tobacco smoke (through tobacco use or second-hand smoke).
The disease now affects men and women almost equally, due in part to increased tobacco use among women in high-income countries.
COPD is not curable, but treatment can slow the progress of the disease.
Total deaths from COPD are projected to increase by more than 30% in the next 10 years without interventions to cut risks, particularly exposure to tobacco smoke.

Chronic obstructive pulmonary disease (COPD) is a lung ailment that is characterized by a persistent blockage of airflow from the lungs. It is an under-diagnosed, life-threatening lung disease that interferes with normal breathing and is not fully reversible. The more familiar terms of chronic bronchitis and emphysema are no longer used; they are now included within the COPD diagnosis.

Symptoms
 The most common symptoms of COPD are breathlessness (or a "need for air"), abnormal sputum (a mix of saliva and mucus in the airway), and a chronic cough. Daily activities, such as walking up a short flight of stairs or carrying a suitcase, can become very difficult as the condition gradually worsens.

Diagnosis and treatment
COPD is confirmed by a simple diagnostic test called "spirometry" that measures how much air a person can inhale and exhale, and how fast air can move into and out of the lungs. Because COPD develops slowly, it is frequently diagnosed in people aged 40 or older.

COPD is not curable. Various forms of treatment can help control its symptoms and increase quality of life for people with the illness. For example, medicines that help dilate major air passages of the lungs can improve shortness of breath.

Who is at risk?
 At one time, COPD was more common in men, but because of increased tobacco use among women in high-income countries, and the higher risk of exposure to indoor air pollution (such as solid fuel used for cooking and heating) in low-income countries, the disease now affects men and women almost equally.

Almost 90% of COPD deaths occur in low- and middle-income countries, where effective strategies for prevention and control are not always implemented or accessible.

Risk factors
 COPD is preventable. The primary cause of COPD is tobacco smoke (including second-hand or passive exposure). Other risk factors include:
indoor air pollution (such as solid fuel used for cooking and heating);
outdoor air pollution;
occupational dusts and chemicals (vapors, irritants, and fumes);
frequent lower respiratory infections during childhood.

Total deaths from COPD are projected to increase by more than 30% in the next 10 years unless urgent action is taken to reduce underlying risk factors, especially tobacco use.

WHO response
 WHO’s work on COPD is part of the organization's overall efforts to prevent and control chronic diseases. WHO aims to:
raise awareness about the global epidemic of chronic diseases;
create more healthy environments, especially for poor and disadvantaged populations;
decrease common chronic disease risk factors, such as tobacco use, unhealthy diet and physical inactivity;
prevent premature deaths and avoidable disabilities from major chronic diseases.

The WHO Framework Convention on Tobacco Control (WHO FCTC) was developed in response to the globalization of the tobacco epidemic, with the aim to protect billions of people from harmful exposure to tobacco. It is the first global health treaty negotiated by World Health Organization, and has been ratified by more than 167 countries.

WHO also leads the Global Alliance against Chronic Respiratory Diseases (GARD), a voluntary alliance of national and international organizations, institutions, and agencies working towards the common goal of reducing the global burden of chronic respiratory diseases. Its vision is a world where all people breathe freely. GARD focuses specifically on the needs of low- and middle-income countries and vulnerable populations.

Sources:



Monday, 17 October 2011

Dennis Ritchie


Dennis Ritchie, Creator of UNIX and C, has died


Dennis Ritchie - Bibliography

1. Albert R. Meyer and Dennis M. Ritchie, The complexity of loop programs, Proc of 22nd ACM National Conference, Washington DC, 1967, pp. 465--469, ACM Press.

 2. B. W. Kernighan and D. M. Ritchie and K. Thompson, QED Text Editor, 5, Bell Laboratories, Murray Hill New Jersey, May 1972, (5) , Comp. Sci. Tech. Rep. No..

 3. D. M. Ritchie and K. Thompson, The sc unix Time-Sharing System, Comm. Assoc. Comp. Mach., Vol. 17, 7, pp. 365--375, July 1974.

4.  K. Thompson and D. M. Ritchie, sc unix Programmer s Manual, Sixth, Bell Laboratories, May 1975.

5. D. M. Ritchie and B. W. Kernighan and M. E. Lesk, The C Programming Language, 31, Bell Laboratories, Murray Hill New Jersey, October 1975, (31 Superseded by B. W. Kernighan and D. M. Ritchie it The C Programming Language Prentice-Hall Englewood Cliffs N.J. 1988.) , Comp. Sci. Tech. Rep. No..

 6. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs New Jersey, 1978.

 7. D. M. Ritchie and K. Thompson, The sc unix Time-Sharing System, Bell Sys. Tech. J., Vol. 57, 6, pp. 1905--1929, 1978, (Also in it Comm. ACM bf 17 pp. 365-375 (1974).) .

 8. K. Thompson and D. M. Ritchie, sc unix Programmer s Manual, Seventh, Bell Laboratories, 1978.

 9. D. M. Ritchie, Unix Time-Sharing System: A Retrospective, Bell Sys. Tech. J., Vol. 57, 6, pp. 1947--1969, 1978, (Also in it Proc. Hawaii International Conference on Systems Science Honolulu Hawaii Jan. 1977.) .

 10. S. C. Johnson and D. M. Ritchie, sc unix Time-Sharing System: Portability of C Programs and the sc unix System, Bell Sys. Tech. J., Vol. 57, 6, pp. 2021--2048, 1978.

11.  D. M. Ritchie and S. C. Johnson and M. E. Lesk and B. W. Kernighan, Unix Time-Sharing System: The C Programming Language, Bell Sys. Tech. J., Vol. 57, 6, pp. 1991--2019, 1978.

 12. J. Reeds and D. M. Ritchie and R. Morris, The H agelin Cipher Machine ( M -209): Cryptanalysis from Ciphertext Alone, Cryptologia, 1979.

 13. B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor, sc unix Programmer s Manual, Vol. 2, Bell Laboratories Bell Laboratories, DNL, Murray Hill New Jersey Murray Hill N.J., July 1979, (59 Section 23) , Comp. Sci. Tech. Rep. No..

14.  D. M. Ritchie, The Evolution of the sc unix Time-Sharing System, Proc. of Symp. on Language Design Programming Methodology, Sydney, September 1979, (Also in it BLTJ 63 (8 Part 2) pp. 1897-1910 October 1984) .

15.  B. W. Kernighan and D. M. Ritchie, The C Programming Language, Encyclopedia of Computer Science, 1980.

 16. B. W. Kernighan and D. M. Ritchie, The sc unix Time-Sharing System, Encyclopedia of Computer Science, 1980.

 17. D. M. Ritchie, A Stream Input-Output System, BLTJ, Vol. 63, 8 Part 2, pp. 1897--1910, October 1984.

18.  D. L. Presotto and D. M. Ritchie, Interprocess Communication in the Eighth Edition sc unix System, Proceedings USENIX Association Summer Conference, Portland Oregon, 1985.

19.  D. M. Ritchie, sc unix - A Dialectic, Proceedings USENIX Association Winter Conference, Washington DC, 1987.

 20. B. W. Kernighan and D. M. Ritchie, The State of C, BYTE, Vol. 13, 8, pp. 205--210, August 1988.

 21. D. M. Ritchie, A Guest Facility for U nicos, Proceedings USENIX Conference on Supercomputing, Pittsburgh PA, September 1988.

 22. B. W. Kernighan and D. M. Ritchie, The C Programming Language Second Edition, Prentice-Hall, Englewood Cliffs New Jersey, 1988.

 23. D. L. Presotto and D. M. Ritchie, Interprocess Communication in the Ninth Edition sc unix System, Software--Practice and Experience, Vol. 20, S1, pp. S1 3--S1-17, June 1990.

 24. D. M. Ritchie, Variable-Size Arrays in C, Journal of C Language Translation, Vol. 2, 2, pp. 81--86, September 1990.

25.  D. M. Ritchie, The Development of the C Language, Proceedings ACM History of Programming Languages II, Cambridge MA, April 1993.

26.  S. Dorward D. Presotto H. Trickey R. Pike D. Ritchie P. Winterbottom, Inferno sc tm, Proceedings of C ompcon 97, 1997.

 27. S. Dorward D. Presotto H. Trickey R. Pike D. Ritchie P. Winterbottom, The I nferno Operating System, Bell Labs Technical Journal, Vol. 2, 1, pp. 5--18, Winter 1997.

 28. R. Pike D. Ritchie, The Styx Architechture for Distributed Systems, Bell Labs Technical Journal, Vol. 4, 2, pp. 146--152, 1999.

SOURCEhttp://cm.bell-labs.com/cm/cs/bib2html/dmr.html

Dennis M. Ritchie - Biography

Dennis M. Ritchie

Dennis M. Ritchie is a researcher in the Convergence, Software, and Computer Science Laboratory of Bell Labs / Lucent Technologies in Murray Hill, NJ. Before that, he was in the now-dissolved Computing Sciences Research Center, serving for several years as head of its Systems Sciences Research department.

I was born Sept. 9, 1941 in Bronxville, N.Y., and received Bachelor's and advanced degrees from Harvard University, where as an undergraduate I concentrated in Physics and as a graduate student in Applied Mathematics. The subject of my 1968 doctoral thesis was subrecursive hierarchies of functions.

My undergraduate experience convinced me that I was not smart enough to be a physicist, and that computers were quite neat. My graduate school experience convinced me that I was not smart enough to be an expert in the theory of algorithms and also that I liked procedural languages better than functional ones.

I joined Bell Labs in 1967, following my father, Alistair E. Ritchie, who had a long career there. His most visible public accomplishment was as co-author of The Design of Switching Circuits, with W. Keister and S. Washburn; it was an influential book on switching theory and logic design just before the transistor era.

Soon after, I contributed to the Multics project, then a joint effort of Bell Labs, MIT, and General Electric. I helped with a compiler for the BCPL language on the Multics machine (GE 645) and on the GE 635 under the GECOS system. Also, I wrote the compiler for ALTRAN, a language and system for symbolic calculation.

Subsequently, I aided Ken Thompson in creating the Unix operating system. After Unix had become well established in the Bell System and in a number of educational, government and commercial installations, Steve Johnson and I (helped by Ken) transported the operating system to the Interdata 8/32, thus demonstrating its portability, and laying the groundwork for the widespread growth of Unix: the Seventh Edition version from the Bell Labs research group was the basis for commercial Unix System V and also for the Unix BSD distributions from the University of California at Berkeley. The last important technical contribution I made to Unix was the Streams mechanism for interconnecting devices, protocols, and applications.

Early in the development of Unix, I added data types and new syntax to Thompson's B language, thus producing the new language C. C was the foundation for the portability of Unix, but it has become widely used in other contexts as well; much application and system development for computers of all sizes, from hand-held to supercomputer, uses it. There are unified U.S. and international standards for the language, and it is the basis for Stroustrup's work on its descendant C++.

Today, as a manager of a small group of researchers, I promote exploration of distributed operating systems, languages, and routing/switching hardware. The recent accomplishments of this group include the Plan 9 operating system, which was released in 1995, and the Inferno operating system, announced April 1996.

 Awards include: ACM award for the outstanding paper of 1974 in systems and languages; IEEE Emmanuel Piore Award (1982), Bell Laboratories Fellow (1983); Association for Computing Machinery Turing Award (1983); ACM Software Systems Award (1983); C&C Foundation award of NEC (1989); IEEE Hamming Medal (1990). I was elected to the U. S. National Academy of Engineering in 1988. In April 1999 I received the U. S. National Medal of Technology. These were all awarded in conjunction with Ken Thompson.

 Ken's virtual coat-tails are long. I'm one of the few, besides Bonnie T., who has seen him wear a real coat (and even black tie) on more than one occasion.

https://www.computer.org/web/awards/pioneer-dennis-ritchie


Facebutt, Kosher Waters – Peter Capusotto